>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
shRNA靶向血管生成素2基因沉默联合奥沙利铂对子宫内膜癌生长抑制作用的研究
作者:周凌1  孙慧婷2  杨思慧3  荆秀娟4  周怀君4 
单位:1. 南京医科大学 鼓楼临床医学院, 江苏 南京 210008;
2. 常州市第二人民医院 生殖中心, 江苏 常州 213003;
3. 南京中医药大学 中西医结合鼓楼临床医学院, 江苏 南京 210008;
4. 南京医科大学鼓楼临床医学院 妇产科, 江苏 南京 210008
关键词:子宫内膜癌 血管生成素2基因沉默 奥沙利铂 抗血管生成 
分类号:R737.33;R73-362
出版年·卷·期(页码):2021·40·第二期(148-157)
摘要:

目的:探讨shRNA靶向血管生成素2(Ang2)基因沉默联合奥沙利铂对子宫内膜癌(endometrial cancer,EC)生长的抑制作用。方法:设计Ang2特异性shRNA,构建携带Ang2-shRNA的pRNAT-CMV3.2-Neo质粒和阴性对照pRNAT-CMV3.2-Neo-neg质粒,并构建阳性和阴性质粒的稳转Ishikawa细胞系。使用未进行任何处理的Ishikawa细胞系、携带阳性和阴性质粒的稳转Ishikawa细胞系分5组进行细胞学实验,分别为生理盐水组、奥沙利铂组、空载质粒组、Ang2敲低组、Ang2敲低联合奥沙利铂组。采用qRT-PCR、蛋白质印迹法检测各组细胞中Ang2 mRNA和蛋白的表达,采用细胞凋亡、侵袭实验检测各组细胞生物学行为的变化。利用上述细胞系建立裸鼠移植瘤模型,分5组(同细胞分组)给予不同的试剂干预,观察肿瘤生长情况,测量移植瘤体积,计算肿瘤生长抑制率;使用免疫组织化学方法检测各组瘤体内vWF蛋白,测算微血管密度;采用qRT-PCR、蛋白质印迹法检测瘤体组织Ang2 mRNA和蛋白的表达。结果:(1)5组Ishikawa细胞Ang2表达检测:奥沙利铂组与生理盐水组比较Ang2 mRNA和蛋白表达分别降低了21.8%和22.9%(均P<0.05);而Ang2敲低组、Ang2敲低联合奥沙利铂组与空载质粒组相比,Ang2 mRNA含量分别降低了76.54%、80.24%(均P<0.001),Ang2蛋白表达分别降低60.79%、65.09%(均P<0.001),差异均具有统计学意义。(2)Ishikawa细胞行为学实验:奥沙利铂组、Ang2敲低组、Ang2敲低联合奥沙利铂组与生理盐水组和空载质粒组相比细胞凋亡数量都有明显增加(均P<0.001),侵袭细胞数量明显减少(均P<0.001)。(3)动物实验:Ang2敲低联合奥沙利铂组与奥沙利铂组及Ang2敲低组相比肿瘤体积明显减小(均P<0.001),抑瘤率高达92.46%,微血管密度显著降低(P<0.05或P<0.001)。结论:敲低Ang2联合奥沙利铂能更有效地抑制Ishikawa细胞中Ang2的表达,促进Ishikawa细胞凋亡、抑制其侵袭能力,抑制移植瘤的生长,减少肿瘤血管的生成。

Objective: To investigate the inhibitory effect of shRNA targeting angiopoigenin 2(Ang2) gene silencing combined with oxaliplatin on tumor growth of endometrial carcinoma(EC). Methods: Ang2-shRNA was designed, and pRNAT-CMV3.2-neo plasmid carrying Ang2-shRNA and the negative control pRNAT-CMV3.2-neo plasmid were constructed, and the stable transgenic Ishikawa cell lines with positive and negative plasmid were constructed. The Ishikawa cell lines without any treatment and the stable Ishikawa cell lines carrying positive and negative plasmids were divided into 5 groups for cytological experiments. The groups were normal saline group, oxaliplatin group, no-load plasmid group, Ang2 knockdown group, and Ang2 knockdown combined with oxaliplatin group. The mRNA and protein expressions of Ang2 in each group were detected by qRT-PCR and Western blotting assay. Cell apoptosis and invasion assay were used to detect the changes of cell biological behavior in each group. The cell lines above were used to establish the xenograft tumor model in nude mice. Tumor growth was observed in 5 groups of nude mice after intervention with different reagents, the volume of the xenograft tumor was measured, and the tumor growth inhibition rate was calculated. vWF protein in each group was detected by immunohistochemical method to measure the microvessel density(MVD). The expression of Ang2 mRNA and protein in the tumor tissues were detected by qRT-PCR and Western blotting. Results: (1) Compared with the normal saline group, the expression of Ang2 mRNA and protein in oxaliplatin group was decreased by 21.8% and 22.9%, respectively(all P<0.05), while Ang2 knockdown group and Ang2 knockdown combined with oxaliplatin group reduced the content of Ang2 mRNA by 76.54% and 80.24% compared with no-load plasmid group, respectively(all P<0.001), the expression of Ang2 protein was decreased by 60.79% and 65.09%(all P<0.001).(2) Compared with the normal saline group and the no-load plasmid group, the number of cell apoptosis were significantly increased in the oxaliplatin group, the Ang2 knockdown group and the Ang2 knockdown combined with oxaliplatin group(all P<0.001), and the number of invaded cells were significantly decreased(all P<0.001).(3) Animal experiments showed, compared with the oxaliplatin group and the Ang2 knockdown group, the tumor volume of the Ang2 knockdown combined with oxaliplatin group was significantly reduced(all P<0.001), the tumor inhibition rate was as high as 92.46%, and the microvessel density was significantly reduced(P<0.05 or P<0.001). Conclusion: Ang2 knockdown combined with oxaliplatin can more effectively inhibit the expression of Ang2 in Ishikawa cells,promote the apoptosis of Ishikawa cells and inhibit its invasion ability. It significantly inhibits the growth of transplanted tumor and reduces the angiogenesis of tumor.

参考文献:

[1] SIEGEL R L,MILLER K D,JEMA A L.Cancer statistics,2020[J].CA Cancer J Clin,2020,70(1):7-30.
[2] 郑荣寿,孙可欣,张思维,等.2015年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2019,41(1):19-28.
[3] WERNER H M J,SALVESEN H B.Current status of molecular biomarkers in endometrial cancer[J].Curr Oncol Rep,2014,16(9):403.
[4] 向阳,孙建衡.难治性妇科恶性肿瘤的处理策略[J].中华妇产科杂志,2018,43(10):721-723.
[5] ZHU X,LI S,XU B,et al.Cancer evolution:A means by which tumors evade treatment[J].Biomed Pharmacother,2021,133:111016
[6] LONG G V,DUMMER R,HAMID O,et al.Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma(ECHO-301/KEYNOTE-252):a phase 3,randomised,doubleblind study[J].Lancet Oncol,2019,20(8):1083-1097.
[7] RECK M,MOK T S K,NISHIO M,et al.Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer(IMpower150):key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised,open-label phase 3 trial[J].Lancet Respir Med,2019,7(5):387-401.
[8] ABU A A,RAVEENDRAN R,GIBSON D.A lipophilic pt(IV) oxaliplatin derivative enhances antitumor activity[J].J Med Chem,2016,59(19):9035.
[9] PETER M B,LIU Y P,PARK G Y,et al.A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress[J].Nat Med,2017,23(4):461-471.
[10] SUN H T,ZHOU H J,HU Y L,et al.Effect of oxaliplatin on the growth of tumor and angiopoietin-2 in micemodels of endometrial carcinoma[J].J Southeast Univ(MedSciEdi),2011,30(3):464-468.
[11] DE PALMA M,BIZIATO D,PETROVA T V.Microenvironmental regulation of tumour angiogenesis[J].Nat Rev Cancer,2017,17(8):457-474.
[12] HARRELL C R,SIMOVIC MARKOVIC B,FELLABAUM C,et al.Molecular mechanisms underlying therapeutic potential of pericytes[J].J Biomed Sci,2018,25:21.
[13] JELTSCH M,LEPPÄNEN V M,SAHARINEN P,et al.Receptor tyrosine kinase-mediated angiogenesis[J].Cold Spring Harb Perspect Biol,2013,5:a009183.
[14] 程子芸,赵建飞,丁艺,等.小分子靶向药物在子宫内膜癌中的临床研究进展[J].东南大学学报(医学版),2016,35(5):817-820.
[15] DE PALMA M,BIZIATO D,PETROVA T V.Microenvironmental regulation of tumour angiogenesis[J].Nat Rev Cancer,2017,17(8):457-474.
[16] SORMENDI S,WIELOCKX B.Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironmen[J].Front Immunol,2018,9:40.
[17] JAIN R K.Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy[J].Science,2005,307:58-62.
[18] KUMAR V,YADAVILLI S,KANNAN R.A review on RNAi therapy for NSCLC:Opportunities and challenges[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2021,13(2):e1677.
[19] MANI S,GRAHAM M A,BREGMAN D B,et al.Oxaliplatin:a review of evolving concepts[J].Cancer Investig,2002,20:246-263.
[20] DIFRANCESCO A M,RUGGERIERO A,RICCARDI R.Cellular and molecular aspects of drugs of the future:oxaliplatin[J].Cell Mol Life Sci,2002,59:1914-1927.
[21] 王萧.实验动物学实验指导[M].北京:北京科学技术出版社,2020:7.
[22] 孔祥怡,周怀君.miRNA-30c及其靶基因MTA-1在子宫内膜癌裸鼠皮下移植瘤中的作用[J].东南大学学报(医学版),2016,35(3):364-370.
[23] FRACASSO P M,BLESSING J A,MOLPUS K L,et al.Phase II study of oxaliplatin as second-line chemotherapy in endometrial carcinoma:A Gynecologic Oncology Group study[J].Gynecologic Oncology,2006,103:523-526.
[24] LIU B R,SUN Y C,QIAN X P,et al.An experimental study of low dose oxaliplatin inhibiting tumour angiogenesis in vivo[J].Journal of Clinical Medicine in Practice,2009,13(2):33-43.
[25] FAN F,GRAY M J,DALLAS N A,et al.Effect of chemotherapeutic stress on induction of vascular endothelial growth factor family members and receptors in human colorectal cancer cells[J].Mol Cancer Ther,2008,7(9):3064-3070.
[26] VIALLARD C,LARRIVÉE B.Tumor angiogenesis and vascular normalization:alternative therapeutic targets[J].Angiogenesis,2017,20:409-426.
[27] JAIN R K.Antiangiogenesis strategies revisited:from starving tumors to alleviating hypoxia[J].Cancer Cell,2014,26:605-622.
[28] 林建伟.RNA干扰技术在临床中的应用[J].世界科学,2011(1):61.
[29] CHEN T,DENG C S.Inhibitory effect of siRNA targeting survivin in gastric cancer MGC-803 cells[J].Int Immunopharmacol,2008,8:1006-1011.
[30] PUSHPARAJ P N,H'NG S C,MELENDEZ A J,et al.Refining siRNA in vivo transfection:Silencing SPHK1 reveals its key role in C5a-induced inflammation in vivo[J].Int J Biochem Cell B,2008,40:1817-1825.
[31] PEER D,PARK E J,MORISHITA Y,et al.Systemic leukocytedirected siRNA delivery revealing cyclin D1 as an anti-inflammatory target[J].Science,2008,319:627-630.
[32] URBAN-KLEIN B,WERTH S,ABUHARBEID S,et al.RNAi-mediated gene-targeting through systemic application of polyethylenimine(PEI)-complexed siRNA in vivo[J].Gene Ther,2005,12(5):461-466.
[33] PARK K,LEE M Y,KIM K S,et al.Target specific tumor treatment by VEGF siRNA complexed with reducible polyethyleneimine-hyaluronic acid conjugate[J].Biomaterials,2010,31:5258-5265.
[34] SHEN B J.Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1[J].Gene Ther,2006,13:225-234.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 405309 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

苏ICP备09058364