>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
肿瘤坏死因子α短期刺激促进骨髓间充质干细胞的成骨分化
作者:侯立鹏1  马丽芳2  王瑞青3 
单位:1. 西安市第九医院 口腔科, 陕西 西安 710054;
2. 军事口腔医学国家重点实验室, 国家口腔疾病临床医学研究中心, 陕西省口腔医学重点实验室, 第四军医大学口腔医院 牙体牙髓病科, 陕西 西安 710032;
3. 第四军医大学 基础医学院, 陕西 西安 710032
关键词:肿瘤坏死因子α 水凝胶 骨髓间充质干细胞 成骨分化 
分类号:R329.2
出版年·卷·期(页码):2021·40·第四期(500-505)
摘要:

目的:探究肿瘤坏死因子α(TNF-α)刺激3 d对骨髓间充质干细胞(BMMSCs)增殖和成骨分化的影响。方法:不同浓度(0、1、10、50 ng·ml-1)的TNF-α刺激BMMSCs 3 d后,MTS细胞增殖检测试剂盒检测BMMSCs继续培养1、4、7 d后的体外增殖活性;细胞迁移实验检测其体外迁移能力;成骨诱导液继续诱导2周后检测其体外碱性磷酸酶(ALP)活性;水凝胶分别包裹1、50 ng·ml-1的TNF-α在小鼠极限模型中植入,8周后取材通过微计算机断层扫描技术(micro-CT)和HE染色检测新骨形成能力。结果:与对照组比较,TNF-α处理组刺激3 d对细胞增殖无影响,但可显著促进BMMSCs的迁移,其中50 ng·ml-1浓度迁移效果最好。ALP活性检测显示,在2周时1、10、50 ng·ml-1 TNF-α均能显著促进BMMSCs的迁移(P<0.05),并呈浓度依赖性递增,50 ng·ml-1的TNF-α效果最好。成功构建了水凝胶TNF-α短期缓释系统,小鼠体内micro-CT和HE染色显示50 ng·ml-1 TNF-α短期缓释组成骨效果最好,能有效促进新骨形成。结论:本实验证实TNF-α成骨诱导液短时间刺激可有效促进BMMSCs在体内体外的成骨分化。

Objective: To explore the influence of tumor necrosis factor-α(TNF-α) on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells(BMMSCs) after 3 days of short-term stimulation. Methods: BMMSCs were stimulated with different concentrations of TNF-α(0, 1, 10, 50 ng·ml-1) for 3 days. The proliferation of BMMSCs in vitro was detected by MTS after 1, 4 and 7 days of continuous culture. Transwell migration assay was used to determine its migration ability in vitro. After 2 weeks of induction, the alkaline phosphatase activity(ALP) of the osteoblasts was detected. TNF-α coated with hydrogel of 1 and 50 ng·ml-1 was implanted in the mouse limit model. After 8 weeks, micro-CT scanning and HE staining were employed to detect the new bone formation ability. Results: Compared with the control group, no effect on cell proliferation in the TNF-α treatment group was found after 3 days of short-term stimulation, but the stimulation could significantly promote the migration of BMMSCs, and the most effective migration ability was obtained with the concentration of 50 ng·ml-1. ALP activity detection showed that the 1,10 and 50 ng·ml-1 of TNF-α could significantly promote the migration of BMMSCs in a concentration dependent manner at 2 weeks(P<0.05), and the concentration of 50 ng·ml-1 of TNF-α had the best effect. A short-term release system of hydrogel TNF-α was successfully constructed. The results of micro-CT and HE staining of mice in vitro showed that 50 ng·ml-1 of TNF-α had the best effect on short-term release of bone formation, and could effectively promote new bone formation. Conclusion: Short-term stimulation of TNF-α can promote the osteogenic differentiation of BMMSCs both in vitro and in vivo.

参考文献:

[1] GOTZ C, WARNKE P H, KOLK A.Current and future options of regeneration methods and reconstructive surgery of the facial skeleton[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2015, 120(3):315-323.
[2] GIANNOUDIS P V, EINHORN T A, MARSH D.Fracture healing:the diamond concept[J]. Injury, 2007, 38(Suppl 4):S3-6.
[3] ZHAO L, WEIR M D, XU H H.Human umbilical cord stem cell encapsulation in calciumphosphate scaffolds for bone engineering[J]. Biomaterials, 2010, 31(14):3848-3857.
[4] PIOLETI D P, MONTJOVENT M O, ZAMBELLI P Y, et al. Bone tissue engineering using foetal cell therapy[J]. Swiss Med Wkly, 2007, 137(155):86-89.
[5] WEISSMAN I I.Translating stem and progenitor cell biology to the clinic:barriers and opportunities[J]. Science, 2000, 287(5457):1442-1446.
[6] DIMITRIOU R, TSIRIDIS E, GIANNOUDIS P V.Current concepts of molecular aspects of bone healing[J]. Injury, 2005, 36(12):1392-1404.
[7] MOUNTZIARIS P M, MIKOS A G.Modulation of the inflammatory response for enhanced bone tissue regeneration[J]. Tissue Eng Part B Rev, 2008, 14(2):179-186.
[8] MOUNTZIARIS P M, SPICER P P, KASPER F K, et al. Harnessing and modulating inflammation in strategies for bone regeneration[J]. Tissue Eng Part B Rev, 2011, 17(6):393-402.
[9] KON T, CHO T J, AIZAWA T, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand(osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing[J]. J Bone Miner Res, 2001, 16(6):1004-1014.
[10] GLASS G E, CHAN J K, FREIDIN A, et al. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells[J]. Proc Natl Acad Sci U S A, 2011, 108(4):1585-1590.
[11] YANG H, MA L, HAN X, et al. The effects of tumor necrosis factor-alpha on mineralization of human dental apical papilla cells[J]. J Endod, 2012, 38(7):960-964.
[12] LU Z, WANG G, DUNSTAN C R, et al. Short-term exposure to tumor necrosis factor-alpha enables human osteoblasts to direct adipose tissue-derived mesenchymal stem cells into osteogenic differentiation[J]. Stem Cells Dev, 2012, 21(13):2420-2429.
[13] LU Z, WANG G, DUNSTAN C R, et al. Activation and promotion of adipose stem cells by tumour necrosis factor-alpha preconditioning for bone regeneration[J]. J Cell Physiol, 2013, 228(8):1737-1744.
[14] 樊友启, 王建安.人骨髓间充质干细胞的培养与鉴定[J]. 全科医学临床与教育, 2005, 3(3):142-153.
[15] SUN J, WEI D, ZHU Y, et al. A spatial patternable macroporous hydrogel with cell-affinity domains to enhance cell spreading and differentiation[J]. Biomaterials, 2014, 35(17):4759-4768.
[16] LAMPE K J, NAMBAL W, SILVERMAN T R, et al. Impact of lactic acid on cell proliferation and free radical-induced cell death in monolayer cultures of neural precursor cells[J]. Biotechnol Bioeng, 2009, 103(6):1214-1223.
[17] YANG P J, LEVENSTON M E, TEMENOFF J S.Modulation of mesenchymal stem cell shape in enzyme-sensitive hydrogels is decoupled from upregulation of fibroblast markers under cyclic tension[J]. Tissue Eng Part A, 2012, 18(21-22):2365-2375.
[18] 张超, 胡蕴玉, 白建萍, 等.骨膜成骨细胞分离培养的方法[J]. 第四军医大学学报, 2001, 22(11):978-980.
[19] DING J, GHALI O, LENCEL P, et al. TNF-alpha and IL-1beta inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells[J]. Life Sci, 2009, 84(15-16):499-504.
[20] 余日月, 曾百进, 刘云松, 等.重组人肿瘤坏死因子α对人脂肪基质细胞体外成骨向分化的影响[J]. 北京大学学报(医学版), 2012, 44(3):475-480.
[21] GILBERT L, HE X, FARMER P, et al. Expression of the osteoblast diferentiation factor RUNX2(Cbfal/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor alpha[J]. J Biol Chem, 2002, 277(4):2695-2701.
[22] CHIBA K, BURGHARDT A J, OSAKI M, et al. Three-dimensional analysis of subchondral cysts in hip osteoarthritis:an ex vivo HR-pQCT study[J]. Bone, 2014, 66:140-145.
[23] HOFFMAN A S.Hydrogels for biomedical applications[J]. Adv Drug Deliv Rev, 2002, 54(1):3-12.
[24] ZHANG Y S, KHADEMHOSSEIN A.Advances in engineering hydrogels[J]. Science, 2017, 356(6337):eaaf3627.
[25] SELIKTAR D.Designing cell-compatible hydrogels for biomedical applications[J]. Science, 2012, 336(6085):1124-1128.
[26] ANNABI N, TAMAYOL A, UQUILLAS J A, et al. 25th anniversary article:rational design and applications of hydrogels in regenerative medicine[J]. Adv Mater, 2014, 26(1):85-124.
[27] SLAUGHTER B V, KHURSHID S S, FISHER O Z, et al. Hydrogels in regenerative medicine[J]. Adv Mater, 2009, 21(32-33):3307-3329.
[28] LEE K Y, MOONEY D J.Hydrogels for tissue engineering[J]. Chem Rev, 2001, 101(7):1869-1879.
[29] WANG H, HANSEN M B, LOWIK P M, et al. Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels[J]. Adv Mater, 2011, 23(12):H119-H124.
[30] HOU S, WANG X, PARK S, et al. Rapid self-integrating, injectable hydrogel for tissue complex regeneration[J]. Adv Healthc Mater, 2015, 4(10):1491-1495.
[31] HOU S, NIU X F, LI L H, et al. Simultaneous nano-and microscale structural control of injectable hydrogels via the assembly of nanofibrous protein microparticles for tissue regeneration[J]. Biomaterials, 2019, 223(1):119458.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 413356 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

苏ICP备09058364