>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
CD8+肿瘤浸润淋巴细胞中TIGIT与TNFRSF9的共同表达增加与结直肠癌不良预后和免疫治疗反应改善的关系
作者:孟家北  范佩文  董丹宁  王若峥 
单位:新疆医科大学附属肿瘤医院 新疆肿瘤学重点实验室/中国医学科学院肿瘤免疫治疗与放疗重点实验室/新疆维吾尔自治区卫健委放射治疗临床重点专科/新疆肿瘤放射治疗临床研究培育中心, 新疆 乌鲁木齐 830011
关键词:免疫治疗生物标志物 结直肠癌 T细胞免疫球蛋白与ITIM结构域蛋白 诱导共刺激分子 肿瘤坏死因子受体超家族成员9 
分类号:R735.3
出版年·卷·期(页码):2025·44·第五期(697-710)
摘要:
目的:探讨T细胞免疫球蛋白与ITIM结构域蛋白(TIGIT)、诱导共刺激分子(ICOS)和肿瘤坏死因子受体超家族成员9(TNFRSF9)在肿瘤免疫微环境中的作用,评估其共表达对结直肠癌患者预后和免疫治疗响应的影响,并揭示潜在的耐药机制。方法:分析新疆医科大学附属肿瘤医院32对结直肠癌患者癌/癌旁组织、19例外周血样本及基因表达综合数据库(GEO)20例单细胞转录组数据,结合GEO与癌症基因组图谱(TCGA)数据库,进行多因素回归及生存分析。使用CellChat和SCENIC方法验证配体-受体信号及转录因子激活。结果:TIGIT-ICOS共表达在肿瘤组织CD8+ T细胞中显著升高,并与肿瘤位置相关(P<0.05);TIGIT-TNFRSF9共表达与免疫治疗的完全缓解率和肿瘤退缩率相关(P<0.05);TIGIT-TNFRSF9共表达亚群中EB病毒诱导基因3(EBI3)显著上调(P<0.000 1),可能抑制CD8+ T细胞功能。生存分析显示,TIGIT-TNFRSF9共表达标记基因心肌型雷诺受体钙通道2(RYR2)和驱动蛋白家族成员7(KIF7)为患者不良预后的独立风险因子(P<0.01)。结论:TIGIT-TNFRSF9共表达在结直肠癌免疫微环境中具有重要作用,并与预后及免疫治疗响应密切相关,提示其为潜在的免疫治疗靶点。
Objective: To investigate the roles of T cell immunoreceptor with Ig and ITIM domains(TIGIT), inducible T-cell costimulator(ICOS), and tumor necrosis factor receptor superfamily member 9(TNFRSF9) in the tumor immune microenvironment, evaluate the prognostic significance and immunotherapy response implications of their co-expression in colorectal cancer(CRC) patients, and reveal potential mechanisms of resistance. Methods: We analyzed 32 paired cancer and adjacent tissues from CRC patients, along with 19 peripheral blood samples from the Affiliated Tumor Hospital of Xinjiang Medical University, and 20 single-cell transcriptome datasets from the gene expression omnibus(GEO) database. Combining GEO and the cancer genome atlas(TCGA) databases, we performed multivariate regression and survival analyses. CellChat and SCENIC analyses were used to validate ligand-receptor signaling interactions and transcription factor activation. Results: TIGIT-ICOS co-expression was significantly increased in tumor-infiltrating CD8+ T cells and correlated with tumor location(P<0.05). The co-expression of TIGIT-TNFRSF9 was significantly associated with complete response rates and tumor regression following immunotherapy(P<0.05). Furthermore, the TIGIT-TNFRSF9 co-expression subgroup exhibited a significant upregulation of Epstein-Barr virus-induced gene 3(EBI3)(P<0.000 1), potentially inhibiting CD8+ T cell functionality. Survival analysis identified the co-expression markers Ryanodine receptor 2(RYR2) and kinesin family member 7(KIF7) as independent risk factors for poor prognosis(P<0.01). Conclusion: TIGIT-TNFRSF9 co-expression plays an important role in the CRC immune microenvironment, correlating closely with prognosis and response to immunotherapy, suggesting its potential as an immunotherapeutic target.
参考文献:
[1] BRAY F, LAVERSANNE M, SUNG H, et al.Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin, 2024, 74(3): 229-263.
[2] MORRIS V K, KENNEDY E B, BAXTER N N, et al.Treatment of metastatic colorectal cancer: ASCO guideline[J].J Clin Oncol, 2023, 41(3): 678-700.
[3] BENSON A B, VENOOK A P, ADAM M, et al.Colon cancer, version 3.2024, NCCN clinical practice guidelines in oncology[J].J Natl Compr Canc Netw, 2024, 22(2 D): e240029.
[4] GANESH K, STADLER Z K, CERCEK A, et al.Immunotherapy in colorectal cancer: rationale, challenges and potential[J].Nat Rev Gastroenterol Hepatol, 2019, 16(6): 361-375.
[5] CERCEK A, LUMISH M, SINOPOLI J, et al.PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer[J].N Engl J Med, 2022, 386(25): 2363-2376.
[6] JARDIM D L, GOODMAN A, DE MELO GAGLIATO D, et al.The challenges of tumor mutational burden as an immunotherapy biomarker[J].Cancer Cell, 2021, 39(2): 154-173.
[7] LIANG R, ZHU X, LAN T, et al.TIGIT promotes CD8+T cells exhaustion and predicts poor prognosis of colorectal cancer[J].Cancer Immunol Immunother, 2021, 70(10): 2781-2793.
[8] LIU Z, ZENG H, JIN K, et al.TIGIT and PD-1 expression atlas predicts response to adjuvant chemotherapy and PD-L1 blockade in muscle-invasive bladder cancer[J].Br J Cancer, 2022, 126(9): 1310-1317.
[9] WU G, HE M, REN K, et al.Inducible co-stimulator ICOS expression correlates with immune cell infiltration and can predict prognosis in lung adenocarcinoma[J].Int J Gen Med, 2022, 15: 3739-3751.
[10] LI Y, WANG Z, JIANG W, et al.Tumor-infiltrating TNFRSF9+ CD8+ T cells define different subsets of clear cell renal cell carcinoma with prognosis and immunotherapeutic response[J].Oncoimmunology, 2020, 9(1): 1838141.
[11] YANG Z Z, KIM H J, WU H, et al.TIGIT expression is associated with T-cell suppression and exhaustion and predicts clinical outcome and anti-PD-1 response in follicular lymphoma[J].Clin Cancer Res, 2020, 26(19): 5217-5231.
[12] AMIN M B, GREENE F L, EDGE S B, et al.The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging[J].CA Cancer J Clin, 2017, 67(2): 93-99.
[13] GOLDMAN M J, CRAFT B, HASTIE M, et al.Visualizing and interpreting cancer genomics data via the Xena platform[J].Nat Biotechnol, 2020, 38(6): 675-678.
[14] HAO Y, HAO S, ANDERSEN-NISSEN E, et al.Integrated analysis of multimodal single-cell data[J].Cell, 2021, 184(13): 3573-3587.e29.
[15] VAN DE SANDE B, FLERIN C, DAVIE K, et al.A scalable SCENIC workflow for single-cell gene regulatory network analysis[J].Nat Protoc, 2020, 15(7): 2247-2276.
[16] YU G.Thirteen years of clusterProfiler[J].Innovation(Camb), 2024, 5(6): 100722.
[17] NEWMAN A M, STEEN C B, LIU C L, et al.Determining cell type abundance and expression from bulk tissues with digital cytometry[J].Nat Biotechnol, 2019, 37(7): 773-782.
[18] JIN S, GUERRERO-JUAREZ C F, ZHANG L, et al.Inference and analysis of cell-cell communication using CellChat[J].Nat Commun, 2021, 12(1): 1088.
[19] GYRFFY B.Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors[J].Innovation(Camb), 2024, 5(3): 100625.
[20] TANG Z, KANG B, LI C, et al.GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis[J].Nucleic Acids Res, 2019, 47(W1): W556-W560.
[21] WANG S, LIU X-S, LI J, ZHAO Q.Ezcox: an R/CRAN package for cox model batch processing and visualization[J].arXiv preprint arXiv: 211014232, 2021.
[22] MAYAKONDA A, LIN D C, ASSENOV Y, et al.Maftools: efficient and comprehensive analysis of somatic variants in cancer[J].Genome Res, 2018, 28(11): 1747-1756.
[23] MIRLEKAR B.Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy[J].SAGE Open Med, 2022, 10: 20503121211069012.
[24] HILDENBRAND K, BOHNACKER S, MENON P R, et al.Human interleukin-12α and EBI3 are cytokines with anti-inflammatory functions[J].Sci Adv, 2023, 9(43): eadg6874.
[25] DONG L, CHEN C, ZHANG Y, et al.The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8+ T cell dysfunction and tumor growth[J].Cancer Cell, 2021, 39(7): 945-957.e10.
[26] ZHANG L, ZHAO Y, YANG J, et al.CTSL, a prognostic marker of breast cancer, that promotes proliferation, migration, and invasion in cells in triple-negative breast cancer[J].Front Oncol, 2023, 13: 1158087.
[27] TAN Z, CHEN M, PENG F, et al.E2F1 as a potential prognostic and therapeutic biomarker by affecting tumor development and immune microenvironment in hepatocellular carcinoma[J].Transl Cancer Res, 2022, 11(8): 2713-2732.
[28] EL-DEEK H E M, AHMED A M, MOHAMMED R A A.Aberration of Nrf2-Bach1 pathway in colorectal carcinoma; role in carcinogenesis and tumor progression[J].Ann Diagn Pathol, 2019, 38: 138-144.
[29] LEHNART S E, MONGILLO M, BELLINGER A, et al.Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice[J].J Clin Invest, 2008, 118(6): 2230-2245.
[30] KAMAL Y, SCHMIT S L, HOEHN H J, et al.Transcriptomic differences between primary colorectal adenocarcinomas and distant metastases reveal metastatic colorectal cancer subtypes[J].Cancer Res, 2019, 79(16): 4227-4241.
[31] CHEN T, ZHANG X, DING X, et al.Ryanodine receptor 2 promotes colorectal cancer metastasis by the ROS/BACH1 axis[J].Mol Oncol, 2023, 17(4): 695-709.
[32] LI H, CHEN J, LIU Z, et al.Construction of a novel copper-induced-cell-death-related gene signature for prognosis in colon cancer, with focus on KIF7[J].BMC Cancer, 2024, 24(1): 1532.
[33] GUO W, ZHANG C, WANG X, et al.Resolving the difference between left-sided and right-sided colorectal cancer by single-cell sequencing[J].JCI Insight, 2022, 7(1): e152616.
[34] LIU B, LI S, CHENG Y, et al.Distinctive multicellular immunosuppressive hubs confer different intervention strategies for left-and right-sided colon cancers[J].Cell Rep Med, 2024, 5(6): 101589.
[35] LUO Y, ZONG Y, HUA H, et al.Immune-infiltrating signature-based classification reveals CD103+CD39+ T cells associate with colorectal cancer prognosis and response to immunotherapy[J].Front Immunol, 2022, 13: 1011590.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 532985 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058364